Index to Chiropractic Literature
Index to Chiropractic Literature
My ICL     Sign In
Monday, May 17, 2021
Index to Chiropractic LiteratureIndex to Chiropractic LiteratureIndex to Chiropractic Literature

For best results switch to Advanced Search.
Article Detail
Return to Search Results
ID 19321
  Title Development, validity and reliability of a novice adjusting simulator for the thoracic spine: Preliminary investigation
Journal Clin Chiropr. 2006 Dec;9(4):170-175
Peer Review Yes
Publication Type Article
Abstract/Notes The purpose of this study was to develop a thoracic adjusting simulator for chiropractic students to evaluate and improve their adjusting skills, and to test reliability and validity of the device. Attempting to make an adjustment more objective by using a simulator may help to improve students’ adjusting skills in respect to speed, force and displacement of the thoracic spine. Evaluating a learned skill in an objective manner may allow better comparison with other students and tutors and possibly improve learning outcomes.

Reliability of the simulator was tested by placing four different weights in random order on the device and recording voltage from the potentiometer with displacement of the device. Linearity of the potentiometer was determined by measuring electrical resistance with displacement. This recording device within the simulator showed a linear displacement and was used to take all the readings. Displacement in the simulator was measured by fixing a pen to the device and measuring the vertical line produced on paper attached to the wall. These four weights were each placed on a force platform to determine the force they would exert on the simulator. Correlation between calculated force and measured force was used to determine validity of the device.

Reliability was tested using the intraclass correlation coefficient (1.000, 95% CI = 0.997–1.000) and the results were found to be significant (P < 0.001). Using the intraclass correlation coefficient the simulator was found to be valid (0.998, 95% CI = 0.973–1.000) and the results were significant (P < 0.001).

During testing the simulator was found to be reliable and valid; it was felt that changes in the device are needed to allow it to more closely represent resistance of the human thoracic spine. The studies used to determine thoracic resistance were mostly done in vitro and may therefore not represent thoracic stiffness of a thoracic spine in vivo. More studies of thoracic stiffness in vivo are needed to be able to modify the adjusting simulator to more accurately represent the stiffness of the thoracic spine in a living human body.

This abstract is reproduced with the permission of the publisher; subscription required for full text.

   Text (Citation) Tagged (Export) Excel
Email To
HTML Text     Excel

To use this feature you must register a personal account in My ICL. Registration is free! In My ICL you can save your ICL searches in My Searches, and you can save search results in My Collections. Be sure to use the Held Citations feature to collect citations from an entire search session. Read more search tips.

Sign Into Existing My ICL Account    |    Register A New My ICL Account
Search Tips
  • Enclose phrases in "quotation marks".  Examples: "low back pain", "evidence-based"
  • Retrieve all forms of a word with an asterisk*, also called a wildcard or truncation.  Example: chiropract* retrieves chiropractic, chiropractor, chiropractors
  • Register an account in My ICL to save search histories (My Searches) and collections of records (My Collections)
Advanced Search Tips