NEUROVERTEBRAL INFLUENCE UPON THE AUTONOMIC NERVOUS SYSTEM: SOME OF THE SOMATO-AUTONOMIC EVIDENCE TO DATE -

PETER L. ROME

ABSTRACT: Objective: To present a broad overview of the literature in relation to the volume and variety of published material referring to spine-related neural reflexes upon organic symptoms, signs and conditions - the somato-autonomic influence. This presentation particularly emphasises somato-autonomic reflexes and to a degree, somato-autonomic-visceral reflexes mediated through the spinal influence of the neuraxis. It seeks to catalogue the evidence of the potential for further influence upon the function of internal anatomical structures - that is, other than those which may be regarded as purely musculoskeletal. The study further highlights the significant formal original neurophysiology research activities by chiropractors and medical researchers. These activities tend to explain the phenomena of this neurovertebral influence upon autonomic and internal function. *Data Sources*: Citations were extracted from a number of sources including: The Index to Chiropractic Literature, PubMed, Reference lists of previously published papers and textbooks, and two osteopathic electronic indexes. Over 500 papers were assessed and in a few cases only the abstracts were obtainable. *Data Synthesis*: There appears to be a developing interest in the influence of the autonomic nervous system (ANS) as depicted by the number of medical texts currently emerging. The most extensive work to date has been by Sato et al, where their studies correlate with spine-related concepts so pertinent to this presentation. The volume, variety and depth of material listed does not appear to have been presented previously. The inter-professional co-operative research projects are noted. Conclusion: It is noted that the volume of material presented tends to further define the neurological basis of the many clinical observations, and may provide additional explanation for the subjective patient reports of positive responses to manual manipulative intervention. Effectively at this stage, this both underpins and builds upon a long-established empirically based rationale.

INDEX TERMS: MeSH: AUTONOMIC NERVOUS SYSTEM; CHIROPRACTIC; MANIPULATION, SPINAL. (OTHER):SO-MATO-AUTONOMIC REFLEX; SOMATO-VISCERAL REFLEX; ORGANIC CONDITIONS; VISCERAL DYSFUNCTION; VERTE-BRAL ADJUSTMENT.

INTRODUCTION

Gray's Anatomy states that the "...function (of the nervous system) is to control and coordinate all the other organs and structures and to relate the individual to its environment."

Gray's statement emphasises the all-encompassing, integrative role of the nervous system – a continuing concept effectively expounded by Sherrington in $1906.^2$

This paper seeks to survey the literature relating to somatic impact upon the autonomic nervous system, and the effect that has on internal organic function or dysfunction. That aim would also assess evidence relating to aberrant somatic neural input, be that stimulatory or suppressive, and in turn

Peter L. Rome, DC, MACC Private practice of chiropractic Mount Waverley, Victoria 3149

Received: 15 March 2008, accepted with revisions 18 August 2008.

Chiropr J Aust 2009; 39: 2-17.

assess, modify, or normalise such influences upon neural physiology and neuropathophysiology.

Various hypotheses exist on this matter of spine-related neural dysfunction. These range from involvement of massive irritation due to bombardment of noxious mechanoreceptors brought on by localised pathomechanics, to irritation and inflammatory response at the radicular level - or a combination of these various factors.³⁻⁷ Carrick, in his significant original research has demonstrated,⁸ and Terrett through an hypothesis,⁹ have proposed concepts of neural influence at a more central level.

In reference to segmental neurospinal dysfunction, it is important to appreciate that at least for the purpose of this paper, a *vertebral subluxation* is not just a strict mechanical displacement of a vertebra. It is more accurately termed a *vertebral subluxation complex* (VSC) to encompass all the involved elements including functions and structures. A significant component in this complex is intersegmental articular mechanical dysfunction. This may comprise aberrant movement, fixation (hypomobility) or hypermobility between adjacent facets, as well as articular muscular and ligamentous changes triggering neural firing of mechanoreceptors, proprioceptors, effectively nociceptive noxious input. The VSC would then include disturbances of these structures and their function, especially their effect upon articular physiology (function) and the integral neurophysiology. Inflammatory and circulatory disturbances of the articular environment could also be associated. It is this total pathophysiological complex that would provide the opportunity through which manual intervention by way of a vertebral adjustment may be directed in order to influence internal body physiology.¹⁰ It is submitted again that segmental dysfunction more than osseous displacement, may be the primary physical-mechanical feature involving any associated neural aberration in this situation but, that is only one part of the complex. Only a dry skeleton could have osseous disruption without more complex involvement.

HISTORICAL

In his 1910 text, Palmer founded what became the chiropractic profession on the basis of the importance of a neurospinal influence upon physiology. He cited the "nervous system known as the automatic functions "11 - now known as the ANS. In 1954, Müller produced a text entitled "Autonomics *in Chiropractic*", again highlighting the importance of the ANS to the profession. His text noted that "*The essential* role of the autonomic nervous system as an integrator and controller of body functions is a fact all are agreed upon. That structure or function is disturbed, sometimes seriously, however this correlation is deranged from any cause is becoming more widely recognized by all schools of healing. It is the very bedrock upon which the premise of chiropractic is based."¹² More recent research has become much more intensive, with sophisticated studies and advanced neurophysiology research into such topics concerning the critical interaction between the musculoskeletal system and the autonomic nervous system.¹³⁻²⁰

Interestingly, as if aware of complex neural physiology through noxious stimulation, Palmer maintained that rather than nerves being "squeezed or pinched", neural *energy* was "...accelerated, (and)...the volume and force is augmented."²¹ It seems he was apparently aware of the bombardment of noxious impulses from disturbed proprioceptors or mechanoreceptors at that time, well before the complexities of such reflexes was appreciated as deeply as they are today.

For some 50 years early last century, the neurophysiologist Sherrington pioneered studies of neural reflexes. He stated that "To describe the action of nerve (sic) as integrative is, although true, hardly sufficient for a definition" - implying that neural influence was extensive.²

In the 1930's, Cannon addressed the issue of a relationship between the sympathetic division of the ANS with homeostasis,²² and Huber and Crosby explored the "Somatic and visceral connections of the diencephalon."²³ A theme followed by Sollman in Germany in 1958.²⁴

Other early authors such as Alverez, Breig, Pottenger, Kuntz and Sachs published significant texts for their time on the topic of neurovisceral disorders.²⁵⁻²⁹ But their concepts now seem to receive less emphasis.

In Russia, Speransky conducted extensive research in neurophysiology, his text was translated and published in

1935 entitled, A Basis for the theory of Medicine... He cites Charcot as noting "that not every injury to a nerve results in dystrophic lesions of the tissues, and that these lesions are connected not with the cessation of the functioning of the nerve, but with its irritation." He also cites Mitchell et al as stating that "partial injury to nerves is more dangerous in this respect than complete severance." ³⁰

More recently, the medical specialists Bannister (1988), Korczyn (1990), Appenzeller (1995), Goldstein (2001) Jänig (2006) have made significant contributions in the field of the autonomic nervous system.³¹⁻³⁵

Currently, there are journals based on the ANS. One entitled *Autonomic Neuroscience: Basic and Clinical*, is produced by Elsevier and edited by Geoffrey Burnstock. This was previously published under the title of *The Journal of the Autonomic Nervous System* until the year 2000. *Clinical Autonomic Research* is the official journal of the Clinical Autonomic Research Society. There are also a number of other journals on the topic of neurophysiology and neurology. To this writer's knowledge, there is no specific journal based on the somatic-autonomic-visceral complex.

Burnstock has authored and co-authored many papers on neurophysiology as listed on Pubmed (http: //www.ncbi.nlm.nih.gov/entrez/query.fcgi). His curriculum vitae would be one of the most extensive in this respect. His discovery of a "third nervous system" - the purinergic, in addition to the adrenergic and the cholinergic, was a most significant contribution to neurophysiology.^{36,37}

Earlier, Johnston *et al* in particular explored clinical aspects of the ANS in some depth. Their exploration of the underlying role of the ANS has been highlighted in at least two pioneering scientific texts. From the mid-1960's to the mid-1980's, they were some of the earliest to broaden the importance of the clinical aspects of autonomic dysfunction.^{38, 39}

SEMINAL WORK

This author is convinced however, that the most notable work in this field is that conducted by Akio Sato and colleagues in Japan. Their widely published works culminated in a text *The Impact Of Somatosensory Input On Autonomic Functions*, published over 328 pages in the *Reviews of Physiology, Biochemistry and Pharmacology* in 1997.¹⁶ These extensive studies in neurophysiology conducted through the laboratories at the Department of the Autonomic Nervous System at the Metropolitan Institute of Gerontology, in Tokyo, Japan, provide a contemporary foundation for understanding clinically observed phenomena noted by manual practitioners. Sato has also been involved in the publications of numerous papers and at least two texts.

It should be noted that both familial and trauma induced *dysautonomia* (also called autonomic dysfunction syndrome,⁴⁰ usually refers to a more serious form of autonomic breakdown, as does the term *partial dysautomia*,⁴¹ or sympathetic dysfunction (Reflex Sympathetic dystrophy).⁴² However, there can be milder versions of the trauma-induced autonomic symptoms. Gazit et al concluded that " ...autonomic nervous system-related symptoms of the patients have a pathophysiological basis, which suggests that dysautonomia is an extraarticular manifestation in the joint hypermobility syndrome." ⁴³

A number of authors have noted a connection between joint hypermobility and autonomic nervous system dysfunction (ANSD).⁴⁴ ANSD usually refers to a more acute and serious clinical situation, even though it is hypothesised to involve joint proprioception.⁴⁵ In the manual therapies however, interest in articular integrity is normally concerned with *hypo*mobility or joint fixations and its potential to affect the ANS.³

This historical section was included to show that a degree of recognition, and supportive evidence for the somatoautonomic concepts have existed for some years. But it is the more subtle clinical presentations which this paper seeks to focus upon.

METHOD

This overview seeks to assess somato-autonomic topics in neurophysiology published by chiropractic and osteopathic researchers, and medical authors in chiropractic and other journals.(Table 1) While not a meta-analysis, this paper summarises the dates and themes of these papers, their authors' professions, and the professions associated with journals of publication. This paper is offered in a manner which would encourage the reader to view the references as an integral part of a study of the hypotheses concerned.

It has also been the intention of this study to present examples of the wide variety of areas researched, and to portray the numerical volume of published items. Consequently, an atypical format (tabular) was adopted to cover such broad factors.

Many early journals were published before the advent of the MeSH terms and the 'Key Words' adjunct. Currently, some medical as well as some chiropractic journals still do not uniformly utilise these systems. A selection of early citations have been included along with the more recent references to note the fact that a degree of relevant physiological research had been in evidence for many years although it is only chiropractors, osteopaths as well as a limited number of medical doctors and physiotherapists who appear interested in this aspect of clinical care.

In both PubMed and Google, a search was made under the terms *somato autonomic, somatic autonomic, somato autonomic visceral* and *dysautonomia*. While there were quite a number of papers on these topics, interest seems to have been renewed more recently. During this search it was noted that there was a direct interest between acupuncture and somato-autonomic-visceral reflexes - a connection also noted by Sato *et al.*¹⁰⁷

A search of library sources revealed considerable published material concerning neurospinal-related visceral physiology and pathophysiology. In recent years more formal papers have been appearing, together with original physiological research studies which tend to clarify the rationale of these spine-related-ANS somatovisceral concepts.

In particular, three electronic avenues which were employed were,

• The Index to Chiropractic Literature (www.chiroindex.org) and,

- The Osteopathic Index (www.osteopathic-research.com).
- http://ostmed.hsc.unt.edu/ostmed/index.html

The primary source of material for this paper was from the examination of the reference lists of previously published material. Citations have been gleaned from these sources as well as PubMed (http://www.ncbi.nlm.nih.gov/entrez/ query.fcgi), Index Medicus and textbooks. The four volumes of the Chiropractic Research Archive Collection (CRAC) index series published by the Canadian Memorial Chiropractic College between circa 1980 and 1990, were also a valuable resource of data for this purpose.¹⁰⁸⁻¹¹¹ Copies of original papers were obtained where possible, and abstracts where this was not feasible.

The electronic *Index to Chiropractic Literature* was examined, while another electronic index MANTIS, also has an extensive electronic reference base of the manual spinal sciences, but was not drawn upon at this time - *The Chiropractic Index – MANTIS (www.healthindex.com/MANTIS) – (ex-Chirolars).*

The PubMed index on CAM was found not to be of assistance on this issue. (*The CAM Citation Index* (*Complementary and Alternative Medicine Citation Index*) (www.nlm.nih.gov/nccam/camonpubmed.htm#),

The author's own database collected over some years comprises more than 1200 citations on specified spine-related conditions. It also includes neurophysiology references on spine-related conditions. These are further divided into the different professions, and list some 127 different pathophysiological organic conditions. As an example of the volume of the material in the general literature - albeit at different standards of evidential levels, at least 21 chiropractic and 8 osteopathic papers concerning respiratory conditions have been located. In addition, there are at least a further 35 medical references also published in relation to spine-related respiratory conditions, these date from 1925 to 1995.

It also notes supportive medical neurophysiological research which has been cited in relevant papers and which report neurospinal influence upon organic function and dysfunction.(Table 2)

The nature of this presentation has been to highlight the variety, volume and depth of available evidence. It especially seeks to explicate the neurophysiological research conducted by chiropractors as well as that in chiropractic institutions and that sponsored by chiropractic research organisations. Where it is possible, it also notes inter-professional joint authorship and inter-professional co-operative research projects involving chiropractors as well as medical and osteopathic researchers in the neurosciences. However, this is not always clear in the publications.

REVIEW

"There is increasing evidence that manual therapies may trigger a cascade of cellular, biomechanical, neural and/or extra-cellular events as the body adapts to the external stress. Collectively (the research suggests) that spinal manipulation can alter the activity of nearby mechanical sensitive neurons...and in turn can lead to responses by the central and autonomic nervous systems...(which) may in turn

CONTRIBUTIONS TO SPINAL NEUROPHYSIOLOGY, NEUROANATOMY and CLINICAL OBSERVATIONS:

PRIMARY AUTHOR	FUNCTION	ORGAN/KEYS	JOURNAL	YEAR
Bogduk N.	Cervical spine	Headaches	JMPT	1992 ⁴⁶
Bolton PS, et al.	Adrenal glands	C-Vertebral movement	Auton Neurosci	200615
Bolton PS, Budgell BS.	Spinal manipulation	Axial sensory beds	Med Hypotheses	200647
Bolton PS.	Reflex effects/PNS	Vertebral subluxations	JMPT	200048
Bolton PS.	Somatosensory	Neck /CNS	JMPT	1998 ⁴⁹
Bolton PS, <i>et al.</i>	Neck afferents/ Respiration	Sympathetic ns, Respiratory ns	Brain Res Bull	199850
Bolton PS, Holland CT.	Neck/CNS Mechanorecepto	rsNormal afference Cervical motion	J Neurosci Methods	1998 ⁵¹
Bolton PS, Tracey DJ.	Neck/sensory	Medullary relay Thalamus	Exp Brain Res	1992 ⁵²
Bolton PS, Tracey DJ.	Neck	Dorsal column	Brain Res	1992 ⁵³
	mechanoreceptors	nuclei/Thalamus		
Bolton PS, Tracey DJ.	Somatosensory	Spinothalamic	Exp Brain Res	1992 ⁵⁴
Briggs K, Boone WR.	Propriospinal Pupillary Changes	Upper cervical cord Somatovisceral/SMT	Exp Brain Res	198855
Brophy GM. et al.	Vestibulospinal	Lumbar parasp musc	Neurosci Lett	1997 ⁵⁶
Budgell BS, Bolton PS.	CSF pressure in rats	CSF	JMPT	200757
Budgell BS, et al.	Neck mechanoreceptors	Heart variable rate	Auton Neurosci	200158
Budgell BS.	Interspinous stimulation	Gastric Motility	J Auton Nerv Syst	200059
Budgell BS, et al.	Reflex effects	VSC/ANS	JMPT	2000 ¹³
Budgell BS, <i>et al.</i>	Interspinous stimulation	Bladder motility	JMPT	199860
Budgell BS, et al.	Interspinous stimulation	Adrenal function	Neurosci Res	1997 ⁶¹
Budgell BS, Sato A.	Cervical subluxation	Cerebral circulation	JMPT	1997 ⁶²
Budgell BS, Sato A.	Modulations/Nociception	ANS	Prog Brain Res	1996 ¹⁴
Budgell BS, <i>et al.</i>	Interspinous stimulation	Cardiovascular	JNMS	1995 ⁶³
Carrick FR.	Cervical Manipulation	Brain function	JMPT	1997 ⁸
Christian GF, et al.	SMT	Immunoreaction	Spine	1988 ⁶⁴
Cramer GD, Darby SA.	Neuroanatomy	Neuraxis/ANS	Text	1995 ⁶⁵
DeBoer KF, et al.	SMT/GI	Myoelectric activity	Man Med	1988 ⁶⁶
Dishman JD, <i>et al.</i>	SMT	Reflex attenuation	Spine	2000 ⁶⁷
Dishman JD, <i>et al.</i>	SMT/massage	Motoneuron excitability	Elect Clin Neurophys	2001 ⁶⁸
Dishman JD, <i>et al.</i>	Motor evoked potentials	Transcranial stimulation	JMPT	2002 ⁶⁹
Edwards IJ, et al.	Somatoautonomic reflex	Cardiorespiratory/BP	J Neurosci	200770
Foreman SM, Croft A.	Cervical syndromes	ANS/Whiplash	Text	200271
Fujimoto T, <i>et al.</i>	Cervical spine mechano	Heart rate/BP	J Auton Nerv Syst	1999 ⁷²
Giles LGF.	Vertebrogenesis	ANS Syndromes	JMPT	1992 ⁷³
Giles LGF.	Neuroanatomy	Tethered cord	Surg Radiol Anat	1991 ⁷⁴
Giles LGF.	Neuroanatomy	Intervertebral foramen	JMPT	1994 ⁷⁵
Giles LGF.	Neurovascular	Spinal canal & IVF	JMPT	200076
Giles LGF.	Neuroanatomy	Intervertebral foramina	Neuro-orthop	199277

Grimm DR, <i>et al.</i>	Musculoskeletal injury	ANS	JMPT	2005 ²⁰
Grod JP, <i>et al.</i>	Proprioception	Neck pain	Arch Phys Med Reha	200278
Hack GD, <i>et al.</i>	Neuroanatomy	Dura mater/rec cap min	Spine	1995 ⁷⁹
Haavik-Taylor H, et al.	Transient modulation	Intracortical inhibition	Chiropr J Aust	2007 ¹⁹
Haavik-Taylor H, <i>et al.</i>	Neck/SMT	Somatosensory evoked potential	Clin Neurophysiol	2007 18
Igarashi Y, e <i>t al.</i>	Arrhythmia	SMT	Chiropr J Aust	200080
Kaushal B, <i>et al.</i>	Neurophysiology	Sensory convergence	Eur J Chiropr	2002 ⁸¹
Kurosawa M, et al.	Somatosensory	Spinal cord blood flow	Auton Neurosci	2006 ⁸²
Murphy B.	Neural plasticity	SMT	ASRF	2004 ⁸³
Murphy DR.	Somato-autonomic	Cervical Neurogenesis	Text	1999 ⁸⁴
Niesluchowski W.	Scoliosis	Brain asymmetry	JMPT	1999 ⁸⁵
Ruch WJ.	Radiological	ANS, SNS	Text	1997 ⁸⁶
#†Sato A.	Somatosympathetic	Reflexes	NINDS/US Dept HEW	1975 ⁸⁷
#Sato A, <i>et al.</i>	Mechanoreceptors	Sympathetic NS	JMPT	1984 ⁸⁸
#Sato A.	Somatosensory/C/V G/I,G/U	Somatovisceral reflexes	JMPT	1992 ⁸⁹
#Sato A.	Noxious/Innocuous	Somatovisceral Reflexes	JMPT	1995 ⁹⁰
#*Sato A, <i>et al.</i>	Somatosensory modulation	ANS	Physiol Biochem Pharm	1997 ¹⁶
#Sato A, Budgell B.	Somatoautonomic Reflexes	Multiple	In: Haldeman S (ed)	2005 ⁹¹
Seaman DR, <i>et al.</i>	Neuropathophysiological	Dysafferentation	JMPT	1998 ⁹²
Watanabe N, Polus B.	Mechanical input	ANS	Chiropr J Aust	2007 ⁹³
Wantanabe N, <i>et al.</i>	Posture/autonomic regulation	Cardiovascular	Chiropr Osteop	2007 ⁹⁴
Whelan TL, et al.	Salivary cortisol levels	Stress response/ SMT	JMPT	2002 ⁹⁵
Wiles MR.	Electrogastrogram	Cervical SMT	JMPT	1989 ⁹⁶
Yates BJ, <i>et al.</i>	Vestibulo-respiratory reflexes		In: Trouth CO et al (eds	1987 ⁹⁷
Yochum TR, Rowe LJ.	Radiology	General	Text	1987 ⁹⁸
OSTEOPATHIC				
Johnson WL, <i>et al.</i>	VSC	Somatic/visceral input	JAOA	2001 ⁹⁹
^Korr IM.	Elect skin resistance patterns	Visceral disease	Fed Proc	1949 ¹⁰⁰
^Korr IM, Wright HM.	VSC	Cutaneous SNS patterns	J Neural Transmission	1964 ¹⁰¹
^Korr IM.	Segmental NS	Disease processes	Text	1970 ¹⁰²
^Korr IM.	Neurophysiology	General	Text	1978 ¹⁰³
Patterson MM, et al.	Somatovisceral	Viscerosomatic reflexes	Text	1992 ¹⁰⁴
^Wright HM, Korr IM.	Sympathetic NS	Segmental facilitation	JAOA	1955 ¹⁰⁵
^Wright HM.	Local vasomotor disturbance		JAOA	1956 ¹⁰⁶
-				

(Includes: original research, chiropractic authors & or chiropractic publications)

Although not a chiropractic publication, this reference makes a significant contribution and includes a mention of the complex neurophysiology of spinal manipulation.

Sato works are directly related to somato-autonomic principles.

† The Research Status of Spinal Manipulative Therapy.

^ Neurophysiologists who worked extensively with the osteopathic profession.

JMPT = Journal Manipulative Physiological Therapeutics.

JAOA = Journal American Osteopathic Association.

(Where authors have been prolific, a limited number of their papers have generally been included).

RELATED/SUPPORTIVE NEUROPHYSIOLOGY RESEARC

AUTHOR(S)	TITLE KEYS	JOURNAL	YEAR
Adachi T, <i>et al.</i>	Cutaneous stimulation/Cerebral blood flow	Neuro Report	1990 ¹¹²
Araki T, <i>et al.</i>	Somato-adrenal medullary reflex	J Auton Nerv Syst	1981 ¹¹³
Arce A, <i>et al.</i>	Autonomic denervation/lymphocyte response	J Auton Nerv Syst	2001114
Barron W, <i>et al.</i>	Articular receptors/cardiovascular reflexes	J Physiol	1973 ¹¹⁵
Bolser DC, <i>et al.</i>	Viscerosomatic reflexes/spinothalamic tract.	J Neurophysiol	1991116
Brennan TJ, <i>et al.</i>	Somatovisceral reflexes/spinothalamic tract	J Neurophysiol	1989 ¹¹⁷
Cao WH, <i>et al.</i>	Somatosensory/c/f noxious -v- non-noxious	Jpn J Physiol	1992 ¹¹⁸
Chiu JH, <i>et al.</i>	Sphincter of Oddi/Somatovisceral reflex	Dig Dis Sci	1999 ¹¹⁹
Coote JH, <i>et al.</i>	Viscero-viscero sympathetic reflex	Neurosci Lett	1984 ¹²⁰
Coote JH, <i>et al.</i>	Somato-sympathetic/cardiac symptoms	Brain Research	1978 ¹²¹
Coote JH.	Somatic afferents/muscle/joints/heart circulation	Brain Research	1975 ¹²²
Coote JH, <i>et al.</i>	Thoracic white rami/somatic/visceral excitation	J Physiol	1969 ¹²³
De Landsheere C, et al.	Spinal cord stimulation/angina	Am J Cardiol	1992 ¹²⁴
Omitrieva L, <i>et al.</i>	Somatic afferents/somatovisceral/muscle	[Zh Evol Biokhim Fiz]	2000125
Edney DP, <i>et al.</i>	Neck muscles afferents/neural gaze.	J Comp Neurol	1986 ¹²⁶
Edwards IJ, <i>et al</i>	Somatoautonomic excitation & inhibition	J Neurosci	200777
Elenkov IJ, <i>et al.</i>	ANS/brain/immune system.	Pharmacol Rev	2000127
ujino M , <i>et al.</i>	Somatic afferent stimulation/adrenal sympathetics	Neurosci Lett	1987 ¹²⁸
Gilbey MP, <i>et al.</i>	Sympathetico-visceral	Baillieres Clin Endocr	1993 ¹²⁹
Gouveia RG, <i>et al.</i>	ANS/Cluster headaches	J Headache Pain	2005130
likosaka O, <i>et al.</i>	Cervical spine/abducens motor neurones	Exp Brain Res	1973 ¹³¹
lobbs SF, <i>et al.</i>	C1/2/Propriospinal/Viscerosomatic/ spinothalamic	J Neurophysiol	1992 ¹³²
lotta H, <i>et al.</i>	Lumbar spine/Vasa nervorum	Neurosci Lett	1991 ¹³³
lyngstrom AS, <i>et</i> al.	Neuromodulation/joint angulation	Nature Neurosci	2007 ¹³⁴
änig W.	ANS/Homeostatis	Text	2006 ³⁶
inkins JR.	Somato-autonomic/Neurogenic syndromes	Text	1997 ¹³⁵
inkins JR, <i>et al.</i>	ANS/Lumbar spine/disc	Am J Roentg	1989 ¹³⁶
Kerr FWL.	Cervical spine/trigeminal tract/solitary nucleus	Exp Neurol	1961 ¹³⁷
Kimura A, <i>et al.</i>	Somato-autonomic reflexes	Jpn J Vet Res	1997 ¹³⁸
Kimura A, <i>et al.</i>	Somatocardiovascular/Cervical cord	Neurosci Res	1995 ¹³⁹
Kirchner F, <i>et al.</i>	Spinal sympathetic inhibition	Brain Research	1975 ¹⁴⁰
Kiyomi K.	Somatoautonomic responses	In: Korr IM.	1978 ¹⁴¹
Kurosawa M, <i>et al</i>	Adrenal sympathetics/somatic stimulation	Neurosci Lett	1987 ⁹²
indquist C, <i>et al.</i>	Mechanical sensitivity of nerve fibres	Brain Res	1973 ¹⁴²
/laeda M.	Somatosensory/vestibular	Prog Brain Res	1979 ¹⁴³
/lenetrey D, <i>et al.</i>	Somatovisceral/Tractus solitarius	J Comp Neurol	1987 ¹⁴⁴

Nagatomi R, <i>et al.</i>	ANS/brain/immune system.	Immunol Rev	2000145
Nash MS.	Depressed immune function	J Spinal Cord Med	2000 ¹⁴⁶
Norman J, <i>et al.</i>	Cutaneovisceral reflex/Heart rate/Vagus	J Physiol	1973 ¹⁴⁷
Norman J, <i>et al</i>	Somatosympathetic afferents/PR/BP	J Physiol	1973 ¹⁴⁸
Ohtori S, <i>et al.</i>	Neuroanatomy/Somatosympathetic	Spine	2001 ¹⁴⁹
Ohtori S, <i>et al.</i>	Lumbar noxious stimulation/Fos/Brain	Spine	2000 ¹⁵⁰
Roca PD.	Ocular manifestations/Whiplash injuries.	Annals Ophthalmology	1972 ¹⁵¹
Sato A, <i>et al.</i>	Gastric motility/skin nociception	Brain Res	1975 ¹⁵²
Sato A, <i>et al.</i>	Heart rate changes/somatosympathetic	J Auton NS	1981 ¹⁵³
Sato A, <i>et al.</i>	Nociception/knee/BP/PR	Neurosci Lett	1984 ¹⁵⁴
Sato A, <i>et al.</i>	Nociception/knee/Catecholomine/adrenal	J Physiol	1986 ¹⁵⁵
Sato A.	Somatic afferent stimuli/Adrenals	Adv Biophys	1987 ¹⁵⁶
Sato A.	Autonomic reflexes/somatic nociception	Masui	1987 ¹⁵⁷
Sato A, <i>et al.</i>	Modulation of visceral function	Japanese J Phys	1987 ¹⁵⁸
Sato A.	Somatosensory/ANS	Neurosci Behav Physiol	1997 ¹⁵⁹
Sato A, <i>et al.</i>	Cardiovascular/somatosensory/ANS	Neurosci Behav Physiol	1997 ¹⁶⁰
Sato A, <i>et al.</i>	Digestive secretions/motility/somatosensory/ ANS	Neurosci Behav Physiol	1997 ¹⁶¹
Sato A, <i>et al.</i>	Urinary/somatosensory/ANS	Neurosci Behav Physiol	1997 ¹⁶²
Sato A, <i>et al</i>	Sudomotor/somatosensory/ANS	Neurosci Behav Physiol	1997 ¹⁶³
Sato A, <i>et al</i>	Endocrine/somatosensory/ANS	Neurosci Behav Physiol	1997 ¹⁶⁴
Sato A, <i>et al</i>	Immune/somatosensory/ANS	Neurosci Behav Physiol	1997 ¹⁶⁵
Schmidt RF	Articular Nociception/Health & Disease	Brain Res	1996 ¹⁶⁶
Sumiya E, <i>et al.</i>	Viscerosomatic inhibition	Jpn J Physiol	1997 ¹⁶⁷
Sun MK, <i>et al.</i>	Nociceptor input/CNS/Medulla	J Physiol	1991 ¹⁶⁸
Takahashi Y. et al.	Lumbar spinal reflex/lower abdomen	Spine	2000 ¹⁶⁹
Vaida JS.	Posture/sudomotor/sympathetic efferents	Indian J Physiol Pharm	1994 ¹⁷⁰
Wright HM, et al.	Segmental vasomotor variations	Fed Proc	1953 ¹⁷¹
Wright HM, et al.	Vasomotor Disturbance	Acta Neuroveg	1960172

lead to observed changes in circulating levels of various neuropeptides and regulatory proteins."¹⁷³

Studies of somato-autonomic function and dysfunction are steadily emerging with quality research which continues to be carried out. Chiropractic neurophysiologists in conjunction with medical neurophysiologists are conducting much of this. (Tables 1 & 2) Some authors may have a number of papers on a particular topic, a limited selection only was adopted in this paper.

While recognising that articular adjustments – a localised and specific form of SMT, do have potential for certain physiological effects, further substantiation of spinal manipulative influence upon visceral conditions is steadily emerging.¹⁷⁴ That is, initial clinical and anecdotal observations are being explored by more extensive and formal studies. A wider acceptance of such concepts has probably developed to the same stage as that of the evidential literature support for manipulative approaches to mechanical lumbar spine conditions of thirty to forty years ago, and now also adopted by other professions.

This growing volume of elucidating scientific research on spine-related neuro-autonomic conditions has been summarised by Slosberg when he reports:

"...that repetitive stimulation of small myelinated and unmyelinated somatic afferents can dramatically increase reflex pre- and post-ganglionic sympathetic discharge." And notes further that "...electrically stimulated articular nerves from knee joints of anesthetized cats (led to) two sympathetic responses of different latencies in the inferior cardiac nerves resulting in increases of heart rate and blood pressure." He states further that "...studies suggest that the alteration of afferent articular input due to joint dysfunction and nociception excitation, in conditions of noxious mechanical deformation or chemical irritation, may provoke significant changes in efferent and autonomic responses." ¹⁷⁵

Much of this research is centred around major noxious stimulation of the autonomic nervous system from vertebrogenic (somato-autonomic) sources into the spinothalamic tract. Due to the integrative nature of the neuraxis, this is now known to fire into the tractus solitarius, interomedial lateral cell column (IML) of the spinal cord, other spinal cord tracts, through the brain stem nuclei and into the cortical areas.⁷² (Tables 1 & 2)

Edwards and colleagues suggest that "...the InM (Intermedius Nucleus) contains neurochemically diverse neurons and sends both excitatory and inhibitory projections to the NTS (Nucleus Tractus Solitarii). These data provide a novel pathway that may underlie possible reflex changes in autonomic variables after neck muscle spindle afferent activation." While somato-autonomic mechanisms are recognised, there is currently only limited evidence exploring the long-term neurological effects of more minor traumatic effects emanating from spinal structures under such adverse conditions.⁷⁷

Jinkins further clarifies the concepts by stating that "The clinical state of neurogenic spinal radiculopathy accompanying nerve root spinal nerve, and dorsal root ganglion injury, may be associated with definite somatic and autonomic syndromes." He notes further that "The combined clinical complex includes "autonomic reflex dysfunction...and ..."generalized alterations in autonomic viscerosomatic tone." ¹³⁵

Medical texts vary in their depth of commitment to the concept of somatovisceral disorders. Bourdillon states tentatively that, "If autonomic reflex activity is accepted as a vehicle for many of the manifestations of joint and somatic dysfunction, then one can postulate that coronary vasospasm might be a result of somatic dysfunction and, if so, that it might respond to manual management." ¹⁷⁶

An interesting study by De Landsheere *et al* incorporating PET monitoring found that stimulating the spinal cord TABLE 3 (electrically), reduced exercise induced angina in patients, without conventional drugs or surgery. They found that the stimulation resulted in decreased ECG signs of myocardial ischemia, but not myocardial perfusion¹⁷⁷

It could be argued that if disturbances of the spine through such trauma as cervical whiplash (in its varying degrees), has recognisable neurological consequences, it is reasonable and possible to assume that normalising such a disturbed cervical spine should then also tend to ameliorate the neurological sequelae.

Whiplash injuries in particular can result in a number of neurological disturbances.(Table 3) In her text, Jackson mentions various autonomic symptoms which could result from disturbances to the cervical spine and cervical sympathetic supply.¹⁹⁴ They include:-

A sensation of exophthalmos	Blurring of vision	'Dazed and addled'
'Drop attacks'	Dysphagia	Nausea
Palpitations	Paresthesias	Tachycardia
Tinnitus	Vertigo	Vomiting
Weakness of		

extremities

These citations provide evidence which tends to suggest that trauma of the cervical spine in particular, can have distinct neurological sequelae. It would seem logical that

Brown S.	Visual accommodation	Clin Experiment Ophthalmol	2003 ¹⁷⁸
Burke JP <i>et al.</i>	Visual system	Graefes Arch Clin Exp Ophth	1992 ¹⁷⁹
Chrisman OD, <i>et al.</i>	Otological	Clin Orthop Rel Res	1962 ¹⁸⁰
Croft AC.	Tissue injury/incl nerve	Text	2002181
Foreman SM.	Nerve system trauma	Text	2002182
Freeman MD, <i>et al.</i>	Whiplash associated disorders	Quebec Task FOrce	1998 ¹⁸³
Grimm DR et al.	ANS	JMPT	2005 ²⁰
Heikkilâ H, <i>et al.</i>	Cervicocephalic kinästhesia	Scand J Rehabil Med	1996 ¹⁸⁴
Hinoki.	Vertigo	Acta Otolaryngol Suppl	1984 ¹⁸⁵
Johansson BH.	Multiple	Pain Res Manage	2006186
Kivioja J, <i>et al.</i>	Immune response	Clin Immunol	2001 ¹⁸⁷
Mallinson AI, <i>et al.</i>	Dizziness c/f non-whiplash	Am J Otol	1998 ¹⁸⁸
May TS.	Headache	Am Acad Neurol	2007 ¹⁸⁹
Pang LQ .	Otological	Laryngoscop	1971 ¹⁹⁰
Radanov BP, <i>et al.</i>	Cognitive deficits	Spine	1992 ¹⁹¹
Roca PD.	Visual system	Annals Ophth	1972 ¹⁹²
Storaci R, <i>et al.</i>	Oculomotor	Eur Spine J	2006 ¹⁹³

POSSIBLE CERVICOGENIC NEUROLOGICAL CONCOMMITANTS OF WHIPLASH

TABLE 4

CHIROPRACTIC- RELATED RESEARCH PAPERS ASPECTS OF BIOCHEMISTRY AND PHYSIOLOGY

Anaphylaxis 200	Inflammatory cell changes ²¹⁵
ACTH 201	Interleukin-2 ²¹⁹
ß-endorphins ²⁰¹⁻²⁰⁴	Lectins ²²⁰
Biophotons 205	Helix pomatia agglutinin (HPA)
Blood pressure 206-208	Phaseolus vulgaris leucoagglutin (PHA-L)
Calcetonin 202	Killer cells 221,222
Catecholamine 209	Lymphocytes ²²³
CD 4 cells ²¹⁰	Macrophages 224
Chemiluminescence ²¹¹	Melanomas ²¹²
Conjunctival nevi ²¹²	Melatonin ²²⁵
Cortisol 201,213,214	Neuroimmunomodulation ²²⁶
Endocrine ²¹⁵	Neutrophils ^{211,227-229}
Endotoxic shock. 200	Oxygen radicals 224
Heart rate 209	Phagocytosis 227,230
Immune complex deposition ²¹⁶	Prostaglandin ^{231,232}
Immune response 215,217	Respiratory burst 228-230,233
Immunoglobulin M (IgM) ²¹⁸	Serum aldosterone ²³⁴
Immunohistochemistry ²¹²	Substance P ^{227,228}
Immunoreactive ACTH 201	Tumor necrosis factor ²²⁸

This table demonstrate s the wider aspects of chiropractic research. (Note: Many of these studies concern an immunological response. More than one term may appear in a single paper. Papers are not necessarily related to spinal manipulation but more the broad nature of chiropractic research.)

mechanical amelioration of mechanical trauma as in cervical facet hypomobility, hypermobility and noxious sensory input from related soft tissue scarring and damage, as well as joint irritation and inflammation, may well ameliorate or alleviate at least some of the associated neurological sequelae. It would seem reasonable to extend these same principles to other levels of injury in the spine. It is reasoned here, that there are varying degrees of whiplash other than the more extreme forms of trauma, less severe mechanical insult or indeed irritation, particularly of a chronic nature which would also have neurologically noxious input, and may explain a number of different insidious signs, symptoms and conditions.

In an extensive study, Hinoko noted that whiplash disturbed 'proprio-autonomic reflexes', not only of the cervical sympathetic nerves, but also that of cervical and lumbar proprioceptors.¹⁹⁵ Others have also noted proprioceptive disturbance in the form of vertigo and head re-positioning aberrations following whiplash.^{184,196-197}

Grimm and colleagues highlighted 'interaction between cutaneous and vasomotor sympathetic neuron' response to acute musculoskeletal injury.²⁰ They monitored "cardiovascular modulation, baroreceptor sensitivity, sudomotor response (skin conduction) and peripheral skin temperature." Their findings were indicative of changes to somato-autonomic function. The physiotherapy profession has more recently also become interested in the neurological aspects of manual therapy as a treatment of non-musculoskeletal conditions.¹⁹⁸ Grieve¹⁹⁹ acknowledges 'autonomic nerve involvement' in such signs and symptoms as:-

Dyspnoea	Flushing	Nausea
Pallor	Pulse alterations	Reduced respiratory excursion
Sweating	Vomiting	

In considering neurospinal influence, it is worth noting the rather wide range of research papers which assess the chiropractic profession's interest in biochemical markers as well as exploring connections between spinal manipulation and this measurable biochemistry. These have been monitored in a number of studies, many of which are related to the immune system. Nevertheless, they reflect rather dynamic interest in measurable biochemistry markers.(Table 4) Apart from the immunological interest in a number of these chiropractic papers,^{216,226} a *neuroimmunological* relationship through the ANS has been recognised.^{127,146,165,187,235}

ANIMAL RESEARCH ON VISCERAL DYSFUNCTION, NEURAL DISTURBANCE AND THE VERTEBRAL SUBLUXATION

AUTHOR(S)	RESEARCH/TITLE	JOURNAL/YEAR
Brennan P, Kokjohn K, Triano J, <i>et al.</i>	Immunological correlates Spinal mobility Model: Dog	Proceedings Intl Conference Spinal Manip. 1991 ²¹⁵
Bolton PS, Holland CT.	Vertebral displacement Model: Cat	Soc Neurosci Abstr. 1996 ²³⁸
Bolton PS Holland CT.	Vertebral motion Model Cats	J Neuroscience Meth 1998 51
Bolton PS Budgell BS, Kimpton A.	Cervical vertebral movement Model Rats	Auton Neurosci 2006 47
Budgell BS, Hotta H, Sato A.	Reflex bladder motility Stimulation of interspinous tissue Model: Rat.	J Manipulative Physiol Ther 1998 ⁶⁰
Budgell BS, Sato A Suzuki A, Uchida S.	Adrenal function Stimulation interspinous tissues Model: Rat	Neurosci Res 1997 ⁶¹
Budgell BS Bolton PS.	Cerebrospinal fluid pressure Model: Rat	J Manipulative Physiol Ther 2007 57
Burns L*, Chandler LC, Rice RW.	Pathogenesis of visceral disease VSC (vertebral lesions) Model: Rabbits	Am Osteop Assoc, (Pub) Text Chicago 1948. ²³⁷
Cleveland CS.	Researching the VSC Model: Rabbit.	Sci Review Chiropr 1965 ²³⁶
Crawford JP, Hickson G, Ward M.	Immune complex deposition Acute synovitis/knee Model: Rabbit	J Manipulative Physiol Ther 1986 ²¹⁶
DeBoer KF.	Gastrointestinal myoelectric activity VSC/vertebral lesions: Model: Rabbit	Europ J Chiropr 1984 ²³⁹
DeBoer KF, Schultz M, McKnight ME.	Gastrointestinal myoelectric Spinal manipulation Model: Rabbits.	Man Med 1988 ⁶⁶
Deboer KF, Hansen J, Dhami M.	Interaction of oxygen radicals and macrophages/ gossypol injection for inflammatory response. Model: Rats, Hamsters	J Manipulative Physiol Ther (Abstract) 1990 ²²⁴
Kaushal B Hayek R, Ali S, <i>et al.</i>	T1-T4 sensory afferents Model: Rats	Eur J Chiropr (Poster Prestn) 2002 ⁸¹
Kurosawa M, Watanabe O. Maruyama H, Budgell B.	Dorsal spinal cord blood flow innocuous cutaneous stimulation Model: Rats	Auton Neurosci 2006 ⁸²
Sato A Swenson RS.	Sympathetic nervous system Spinal column stress Model: Rats	J Manipulative Physiol Ther 1984 ⁸⁸
Waddell SC, Davidson JS, <i>et al.</i>	Immune response/endotoxic shock Cervical sympathetic trunk Model: Rats	J Manipulative Physiol Ther 1992 ²⁰⁰

This table reflects chiropractic researchers or animal research papers in chiropractic journals. (*Dr Burns has published at length on her extensive research, particularly in the J Am Osteop Assoc and the AT Still Research Institute Bull, the most recent is circa 1953.)

Some acknowledgement should also be placed on research into the effects of spine-related physiology, pathomechanics, and pathophysiology in an animal model. Two of the earliest studies on this topic were conducted by Cleveland (Circa 1965) and Burns et al in 1948.^{236,237} More recent research by Brennan *et al* amongst others utilising mammalian subjects, has been particularly extensive.(Table 5)

Another paper of interest was that by Kimura and Sato entitled "Somatic regulation of autonomic functions in anaesthetised animals – neural mechanisms of physical therapy including acupuncture", depicts extensive somatoautonomic circuits.¹³⁸

A recent landmark study by Bakkum *et al.*, found that "preliminary data suggest that chronic vertebral hypomobility at L4-L6 in the rat affects synaptic density and morphology in the superficial dorsal horn of the L2 spinal cord level."²⁴⁰This finding would fit within the chiropractic model of segmental fixation within the VSC.

Physical postural distortions, anomalies, and dysfunction of the spine have also been attributed to adverse influence on the function of visceral structures innervated from disturbed vertebral levels.(Table 6) Over almost fifty years between 1905 and 1952, Goldthwaite and medical colleagues in particular, espoused the postural implications and complications of visceroptosis and vascular stasis associated with a wide range of visceral conditions. In their extensively referenced text Goldthwaite *et al.*, stated that "*It is through this autonomic system that disturbances or improvements in visceral function are mediated by changes in the mechanics of the body.*" ²⁴⁵ A number of mechanisms contribute to significant proprioceptive input, with direct structural influence through the centralised neural channels. This would suggest that a significant change in posture and postural mechanics may influence neuropathophysiology. Lennon *et al* summarise this aspect as follows:

"Observations of the striking influence of postural mechanics on function and symptomatology have led to our hypothesis that posture affects and moderates every physiologic function from breathing to hormonal production. Spinal pain, headache, mood, blood pressure, pulse, and lung capacity are among the functions most easily influenced by posture."

"The most significant influences of posture are upon respiration, oxygenation, and sympathetic function. Ultimately, it appears that homeostasis and autonomic regulation are intimately connected with posture.²⁴⁹

Table 6

	AFFECT OF POSTURAL ABE	BERATIONS ON THE ANS.
Black FO <i>et al</i> .	1983	Vestibular ²⁴¹
Bouhuys A, <i>et a</i> l.	1962	Gas distribution in lungs ²⁴²
Bouhuys A.	1963	Asthma ²⁴³
Gagey BP, <i>et al</i> .	1996	Body axis ²⁴⁴
Goldthwait JE, <i>et al.</i>	1952	Multi (Text) ²⁴⁵
Gökpinar E, <i>et al.</i>	1998	Non-toxic goitre ²⁴⁶
Gooch AS, <i>et al</i>	1967	Cardiac/Posture ²⁴⁷
Grubb BP, <i>et al.</i>	2006	Tachycardia 41
Kado DM, <i>et al</i> .	2004	Geriatric mortality 248
Korr IM.	1949	Sudomotor ¹⁰⁰
Lennon J, <i>et al.</i>	1994	Multi ²⁴⁹
Lewit K.	1980	Respiration ²⁵⁰
Martin-Du Pan RC, et al.	2004	Multi ²⁵¹
Schey WL.	1976	Multi ²⁵²
Storaci R, <i>et al.</i>	2006	Oculomotor dysfunction ¹⁹³
Ussher NT.	1933	Multi ²⁵³
Ussher NT.	1940	Multi ²⁵⁴
Vaida JS, <i>et al.</i>	1994	Sudomotor ¹⁷⁰
Watanabe N, et al.	2007	Autonomic regulation/cardiovascular 94
Watson DH, et al.	1993	Cervicogenic headaches/muscles 255
Wright HM, <i>et al.</i>	1966	Skin temperature 256
Wyke BD.	1979	Senile disequilibrium ²⁵⁷

VASOMOTOR RESPONSE TO SPINE-RELATED ABBERATIONS

AUTHOR	YEAR	JOURNAL
Adachi T, <i>et al.</i>	1990	Neuro Report ¹¹²
Appenzeller O, <i>et al.</i>	1965	J Neurol Neurosurg Psychiatr ²⁵⁰
Figar S, e <i>t al.</i>	1967	Acta Neuroveg ²⁵¹
Figar S, <i>et al.</i>	1967	Acta Univ Carolinae ²⁵²
Figar S, <i>et al.</i>	1965	Acta Univ Carolinae ²⁵³
Giles LGF.	2000	JMPT ⁷⁶
Gongal'skii VV, <i>et al.</i>	1992	Neirofiziologiia (Ukraine) ²⁵⁴
Grimm DR <i>et al.</i>	2005	JMPT ²⁰
Hotta H, Nishijo K, <i>et al.</i>	1991	Neurosci Lett ¹³³
Knutson GA.	2001	JMPT ²⁵⁵
Kurosawa M, <i>et al.</i>	2006	Auton Neurosci ⁸²
Mc Knight ME, DeBoer KF.	1988	JMPT ²⁵⁶
Passatore M, <i>et al.</i>	1996	Acta Neurobiol Exp ²⁵⁷
Potts JT.	2002	Clin Exp Pharmacol Physiol ²⁵⁸
Potts JT, Paton JF, Mitchell JH, et al.	2003	Neurosci ²⁵⁹
Potts JT, Spyer KM, Paton JFR.	2000	Brain Res Bull ²⁶⁰
Sato A, Sato Y, Schmidt PE.	1997	Rev Physiol Biochem Pharm ²⁶¹
Shortt TL, Ray CA.	1997	Am J Physiol ²⁶²
Sun MK, Spyer KM.	1991	J Physiol ¹⁶⁸
Wright HM.	1956	J Am Osteop Assoc ¹⁰⁶
Wright HM, <i>et al.</i>	1960	Acta Neuroveg ¹⁷¹

In addition, cutaneous and vasomotor autonomic reflexes can provide further examples of spine-related somatoautonomic activity.(Table 7)

Wilson noted that "static contraction of skeletal muscle activates small-diameter afferent nerve fibres which evoke a reflex increase in sympathetic nerve activity and cardiovascular function." They cite others as making the same observation.²⁷¹

As highlighted by D'Aubigne in the preface to Kapandji's text (and in the text's title), is the term central to this subject - the term 'physiology of a joint'. It comprises not only the cell physiology of all associated articular tissue, but also the biomechanical aspects of normal articular movements – joint physiology, structures and function.²⁷² Physiology can be defined as the "*a branch of biology that deals with the functions and activities of life or of living matter (as organs, tissues, or cells) and of the physical and chemical phenomena involved.*" Pathophysiology of a joint then is some abnormality of the function of associated tissues, including especially neural tissues and articular mechanics – a *derangement of function* or "*the physiology of abnormal states; specifically : the functional changes that accompany a particular syndrome or disease.*" ²⁷³

Whatmore and Kohli define the term dysponesis and that "most diseases consist of physiologic reactions that lead to organic dysfunction. These physiologic reactions constitute the response of the organism to some noxious agent, whether microbial, chemical, or mechanical."²⁷⁴

In another component of the subluxation complex (myopathology or myopathophysiology), Edwards *et al* proposed that autonomic variables can be influenced by afferent muscle spindle activation, particularly from the posterior muscles of the neck. Further, that cardiorespiratory variables rely on interaction between the somatic and autonomic systems, essentially somato-sympathetic reflexes.⁷⁰

Hyngstrom *et al*, found further that "intrinsic electrical properties of spinal motoneurons vary with joint angle(s)..." and that "*dendrites of spinal motoneurons amplify inputs to a marked degree through persistent inward currents (PICs)*...(*where*) *dendritic amplification is subject to neuromodulatory control from the brainstem*." ¹³⁴

It is submitted that if autonomic influence can be so readily disturbed locally, it would seem reasonable that associated visceral function could also be influenced, and that the material presented would tend to support that hypothesis. Inasmuch as the correction (vertebral adjustment) of a physically and physiologically disturbed spinal element (a VSC) may provide an acknowledged physiological mechanism to ameliorate or normalise the connected autonomic disturbance and linked organic dysfunction, that hypothesis could then be reasonably supported.

DISCUSSION

'The autonomic nervous system is intimately responsive to changes in the somatic activities of the body and while its connections with the somatic elements are not always clear in anatomical terms, the physiological evidence of visceral reflex activities stimulated by somatic events is abundant." ²⁷⁵

Central to this discussion is the fact that the autonomic nervous system "*is a visceral and largely involuntary sensory and motor system (where) virtually all visceral reflexes are mediated by local circuits in the brain stem or spinal cord*" ²⁷⁶ As stated, much of this activity is interceded through the spinal cord neurologically and the intervertebral foramina anatomically. If it is accepted that the ANS effectively influences all functions in the body, then there are six key elements to be addressed on this topic of external manual influence and spine-related pathophysiology. They are:-

- 1. Neural dysfunction. Whether within the vertebral subluxation complex (segmental dysfunction) there can be influence, irritation, interference or modulation (stimulation or inhibition) with afferent and/or efferent neural transmission Dorlands Dictionary defines such a role as reflexogenic *producing or increasing reflex action.*²⁷⁷
- 2. Organic dysfunction. Whether any resultant altered neural transmission can adversely alter or influence innervated structural or organic physiology;
- 3. The *degree* to which any neural-induced pathophysiology of viscera may take place;
- 4. Neural Pathophysiology. Whether subsequent manual spinal adjustment (SMT) can positively influence neuropathophysiology of neural dysfunction;
- 5. Organic pathophysiology. Whether manual adjustment may influence the innervated visceral dysfunction or other structures by that positive influence, and if so;
- 6. How that influence may be monitored and modified to best effect for a particular patient's response.

It is submitted that if a spinal, or indeed a peripheral articular adjustment does not affect, influence or have input upon the nervous system in any way, then effectively, manual manipulative therapy professions would not have a *raison d'être* in advancing such a neurospinal model. The reduction by articular adjustment of a bombardment of noxious neural stimuli from aberrant articular or associated soft tissue nociceptive^{152,166,270,278} input, could be deemed an example of a positive influence. Clinical examples would be in the cases of resolution of the vascular component of cervicogenic headaches,⁶⁵ or the positive influence upon a dysfunctional lumbar spinal segment associated with PMT or dysmenorrhea.

 – conditions that are a dysfunction (pathophysiological) rather than pathological.^{279,280}

If neural disturbance (Table 8) via hyperstimulation, suppression, or irritation is present within a subluxation complex, and deliberate neutralisation or normalisation of such aberrations through a vertebral segmental adjustment takes place, then the vertebral adjustment would be deemed to have had a positive neural influence. The differentiation and degree of a VSC affecting a somatic-somatic or a somatovisceral reflex (or both at once), must be the subject of interesting future research.

Another area of research interest could involve differentiating the variation in biological response to the VSC. For example, one response might be somato-somatic and another somato-visceral, even though by definition both would have a segmental neurological factor at the same vertebral level. A more specific example would be why a C1/C2 VSC in one patient produces headaches, in another migraines, and in yet another, no headache at all - just localised facet or muscle pain.

Extensive research currently being undertaken by the chiropractic neuroscientist Bolton et al, seems to corroborate the hypothesis of definitive compromise of neural physiology due to articular facet disturbance.^{282,283} Their research involves complex neurological aspects of both the VSC and the vertebral adjustment.

In relation to other spinal levels, there are a number of symptoms which can reflect spine-related neurological involvement.²⁸⁴ Common examples would include pain as in vertebrogenic sciatica and brachial plexus neuropathy.^{285,286} Symptomatically, these conditions may be associated with various other neural symptoms including paresthesias, formication, muscle weakness, hyporeflexia, hyperalgesia and hypalgesia, through to muscle atrophy and trophic changes.²⁸⁷ In osteopathic research, Karason and Drysdale demonstrate a somatovisceral reflex involving increased cutaneous circulation at the L5/S1 level, following administration of spinal adjustments (high-velocity low-amplitude – HVLA). These were conducted 'outside the region of the sympathetic outflow.' ²⁸⁸

Further examples would be spinogenic dyspepsia.²⁸⁹⁻²⁹² Another could be the ciliospinal reflex, which incorporates both elements of a transient basic somatovisceral reflex. Chusid and McDonald classify the ciliospinal reflex as a visceral reflex. They also note that in the presence of Horner's Syndrome which involves the T1 and T2 sympathetic segment, the ciliospinal reflex is lost.²⁹³

It may be a rudimentary example, but if it is noted that just a sharp stimulating slap on the back can affect neural activity (nociceptive, mechanoceptive) and invoke sympathetic responses such as pupillary dilation, increased pulse rate and adrenal secretion, then a somato-autonomic neural mechanism would be demonstrated. If that slap on the back can produce a generalised somato-autonomic response, then a controlled, specific, neuromechanical stimulation via a specific vertebral adjustment to a mechanically disturbed spinal segment may have the potential towards a more localised and predictable physiological response. It is noted that other factors such as psychological aspects, may also be involved in this example.

Physical therapy techniques including exercises, and at times manual manipulative musculoskeletal techniques, have also been employed in the management of a variety of visceral conditions involving the sympathetic nervous system. These include respiratory and cardiovascular rehabilitation.²⁹⁴

Recognition of the existence of neural and visceral pathophysiology or physiological dysfunction are central to this model. While consideration is given to the possibility of vertebrogenic visceral dysfunction and vertebrogenic visceral symptoms, the advent of actual vertebrogenic visceral pathology needs additional research. The possibility of simulated symptoms of visceral conditions has been discussed elsewhere.²⁹⁵

Even with a diagnosis of a *simulated* organic condition, the patient's complaint is likely to be present in a symptomatic form. Unless the symptom is recognised as *simulation*, then previous diagnoses, treatments, or medication are likely to be based on those symptoms and not necessarily directed at the condition itself. That is, a treatment may well have been based in error on an actual organic condition, but one that is only simulated. One wonders if this could be a potential shortcoming in some Cochrane Collaboration studies, which appear to be based on the assumption of an accurate diagnosis in the first place - followed by treatment based on that diagnosis.

On the other hand there is a need for much more fundamental research to fully substantiate the spinovisceral role, even though reasonable evidence does exist. Conversely, there is a far greater paucity of evidence which would *contradict* claims by patients that they subjectively experience benefit from SMT. There seems to be a notable lack of double-blind controlled studies which *negate* positive claims regarding autonomic symptoms by patients under chiropractic care. Indeed, to justify the more recent adoption by *manipulative medicine* and *manipulative physiotherapy* of manual spinal therapy in relation to musculoskeletal conditions, there would appear to be a lack of evidential studies which provide the legitimacy for and justification of that involvement.

A connection has been discussed between mechanical spinal disturbance and resultant influence upon autonomic function.¹³ This has been further depicted by way of highlighting sensory and mechanical disturbance from lumbar and cervical spinal facet changes (Table 1), and from whiplash (Table 3). It is also seen neurologically through the autonomic symptoms associated with migraine and other headaches, ²⁹⁶⁻²⁹⁸ and pain.(Table 9)³⁹⁹⁻⁴¹⁰ There does however seem to be only limited research into the ANS effects from the varying durations and severities of more minor chronic pain situations. Although Johnston^{38,39} and Bannister³¹ have discussed the finding that autonomic function, autonomic dysfunction and degrees of autonomic failure can be of varying degrees of severity. Carrick has shown that specific influence on cervical spinal structures has led to a reasonable hypothesis regarding spinal influence upon brain function, as monitored by blind-spot mapping.⁸ Disturbance of specific aspects of the extensive autonomic network may also explain

some visceral symptoms and pathophysiological conditions of organic dysfunction as listed in this paper.

SUMMARY

"Health practices such as acupuncture and spinal manipulation frequently employ stimulation of somatic tissues in the treatment of visceral symptomology. The efficacy of these practices may well be based in somato-autonomic reflexes. An understanding of how afferent input modulates autonomic function, therefore, has considerable meaning beyond its academic interest." ¹⁴

Traditionally, medical interest in neural function in man has been centred on the more serious expressions of ANS dysfunction.^{31,311} However it is in relation to the more subtle signs and symptoms which this paper sought to illustrate – and especially, to look at the *neurospinal* connections – even in infants.³¹²

It is a stimulating chore to attempt to differentiate between the papers mentioned. The cited extensive writings in the referenced literature by Bolton, Brennan, Budgell, Burns, Carrick, Pickar, Korr, Patterson, Swenson and particularly Sato *et al.*, do provide a deeper awareness and appreciation of neuro-vertebral concepts. Their contribution has been significant in providing greater insight into the wide influence of disturbed somato-autonomic-visceral reflexes.

Based on the indications presented, it would be fair to suggest that to date, the neurological implications of SMT may be more intricate, extensive and sophisticated than even DD Palmer may have believed.³¹³ However, more research is required for further understanding and to elucidate the complex of neurovisceral-pathophysiological phenomena. It is hoped that true scientists would thoroughly consider all material before drawing conclusions on the role of chiropractic in this somato-autonomic area.

As indicated, basic scientific evidence does exist in support of a spine related influence upon the ANS. It suggests distinctly possible vertebrogenic factors in affecting such autonomic activity in the disturbance of some forms of heart rate, blood pressure and neural activity in renal, adrenal and gastrointestinal function. The potential for a possible physical, as opposed to a chemical form of intervention, is exciting. Given the volume, variety and indeed depth of the material mentioned here, one could be regarded as ultra-conservative if one concluded meekly that there does appear to be at least some potential in support of an hypothesis of spine-related neuro-autonomic pathophysiological dysfunction. Sato *et al* stated that "...*the decreases in blood pressure and renal nerve activity during manipulation of the spine are thought to be supraspinal reflexes.*" ³¹⁴

CONCLUSION

"In contrast to the impressive body of knowledge concerning the effects of visceral afferent activity on autonomic functions, there is, generally speaking, much less information available on the reflex regulation of visceral organs by somatic afferent activity from skin, the skeletal muscle and their tendons, and from joints and other deep tissues. The elucidation of the neural mechanisms of somatically induced autonomic reflex responses, usually called somato-autonomic reflexes, is, however, essential to

Table 8

SPINE-RELATED MODULATION OF THE ANS

Budgell B, Sato A.	Modulation	199614
Dhami MSI, Coyle BA.	Stimulatory	1986 ²²⁵
Dishman JD, Ball KA, Burke J.	Excitatory	2002 ⁶⁹
Edwards IJ, Dallas ML, Poole SL, et al.	Excitatory & Inhibitory	200770
Fidelbus J.	Somatosympathetic reflexes	1989 ²²⁶
Fujimoto T, <i>et al.</i>	Stimulatory	199972
Fujino M, <i>et al.</i>	Stimulatory	1987 ¹²⁸
Haavik-Taylor H, Murphy B.	Inhibitory	200719
Hinoki M.	Excitatory	1984 ¹⁸⁵
Hyngstrom AS, Johnson, et al.	Excitatory/Amplification	2007 ¹³⁴
Kirchner F, Kirchner D, Polosa C.	Inhibitory	1975 ¹⁴⁰
Lennon J, <i>et al.</i>	Modulation	1994 ²⁴⁹
Ohtori S, <i>et al.</i>	Stimulatory	2000150
Pickar JG.	Excitatory & Inhibitory	2000 ²⁸¹
Sato A.	Excitatory	1987 ¹⁵⁷
Sato A, Schmidt RF.	Modulation	1987 ¹⁵⁸
Sato A, Sato Y, Schmidt RF.	Excitatory & Inhibitory	1987 ¹⁶
Sato A.	Excitatory	1997 ¹⁵⁹

developing a truly scientific understanding of the mechanisms underlying most forms of physical therapy, including spinal manipulation and traditional as well as modern forms of acupuncture and moxibustion." – Sato A et al ³¹⁵

In essence, this has been an attempt to highlight the published literature surrounding the hypotheses appropriate to the manual manipulative therapies in general, and the science of chiropractic in particular. It draws connections between the effect upon the autonomic nervous system due to pain, postural disturbance, and the mechanical disruption of trauma, with whiplash being the most easily demonstrated. There are indications in some of the references that trauma does not have to be extreme to produce such symptoms. It has attempted further, to look at the reflexogenic effects of factors affecting the ANS. It then follows the next association - that of the effect of ANS irritation upon the physiology of structures innervated by an ANS modified by such changes, especially those regarded as spine-related.

It would seem reasonable to hypothesise that if disturbance or mechanical insult to the spine can lead to ANS-related dysfunction or symptoms, then alleviation of that disturbance or insult should also tend to ameliorate those same symptoms, and thereby encourage disturbed physiology in involved structures to return towards normal function.

The volume and variety of evidence presented in this cursory overview, would tend to suggest there should be open mindedness when considering the possibilities of manual management of a number of somatovisceral conditions. An attitude of outright rejection may tend to limit chiropractic within a musculoskeletal field. This could deny science a whole area of opportunity, and deprive certain patients of options for a potential source of minimally invasive natural health management. Once all the available evidence is considered, and further research has had the opportunity to explain the clinically observed phenomenon of positive outcomes, proper assessment can then take place. Despite the material presented here, one is still reticent in making broad claims.

To consider the historical base for chiropractic, without the vital inherent correlations with the nervous system, is essentially to not fully appreciate chiropractic as it was originally intended - and where it is currently pioneering this natural model of health care.

Co-operation between the health professions, together with a serious, constructive and unbiased research effort into this topic, would raise the potential for a more effective, non-invasive means of influencing internal physiology and potentially, pathophysiology.

It would seem appropriate to be able to influence the nervous system and physiological dysfunction through the least invasive intervention possible and through readily accessible neural procedures. If that potential is through SMT, then it behoves the scientific community to explore that potential and develop it to its extreme. Rejecting the concept without thorough investigation is unscientific and close-minded.

While much research is currently underway, many areas remain to be explored in order to further develop the somato-

PAIN AND THE ANS

Benarroch EE.	Pain /ANS	2001 ²⁹⁹
Cortelli P Pierangeli G.	Chronic pain/ANS	2003300
Cramer GD, Darby SA.	Spinogenic pain	1995 ³⁰¹
Grod JP, Diakow PR.	Neck pain/proprioception	2002302
J‰nig W.	Sympthetic NS/Pain	2006303
LeBoeuf-Yde C, <i>et al.</i>	Low back pain/Health	2003304
Michaelis M, Janig W.	Sympathetic NS/Pain	1998 ³⁰⁵
Nathan PW.	Sympathetic NS/Pain	1988 ³⁰⁶
Passatore M, <i>et al</i> .	Sympathetic NS/Pain	2004307
Rix GD, Bagust J.	Proprioception/headache/neck pain	2001308
Sato A, Sato Y, Schmidt RF.	Somatic nociception	1997 ³⁰⁹
Sterling M, Jull G, Wright A.	Sympathetic NS/Cervical pain	2001 ³¹⁰

autonomic-visceral hypothesis. To this author, the weight of the evidence so far is such that a significant neurospinal connection cannot be ignored or discounted. Beyond the basic neurophysiological research, the positive clinical indications so far suggest quite inspiring promise. "The human nervous system is the most complex physical system known to mankind: it consists of many billions of interactive units whose constantly changing patterns of activity are **reflected in every aspect** of human behaviour and experience." Gray's Anatomy ³¹⁶

An extensive list of references is available by contacting the author on cadaps@bigpond.net.au

Copyright of Chiropractic Journal of Australia is the property of Copyright Agency Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.